Description
新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)
Input
输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i + 2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。
Output
你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。
Sample Input
5 5
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3
Sample Output
4
HINT
【样例说明】选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。【评分方法】本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。【数据规模和约定】 80%的数据中:N≤200,M≤1 000。 100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。
题目分析
裸的最大权闭和子图
具体讲解:传送门
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <algorithm>
using namespace std;
int n,m,ans;
int tot=1,head[833333],to[833333],net[833333],val[833333];
int s=0,t=833331;
void add(int x,int y,int c)
{
net[++tot]=head[x],head[x]=tot,to[tot]=y,val[tot]=c;
net[++tot]=head[y],head[y]=tot,to[tot]=x,val[tot]=0;
}
int dis[833333];
int bfs()
{
queue<int>q;
while(!q.empty())q.pop();
memset(dis,0,sizeof dis);
q.push(s);
dis[s]=1;
while(q.size())
{
int nmp=q.front();
q.pop();
for(int i=head[nmp];i;i=net[i])
if(val[i]>0&&!dis[to[i]])
{
dis[to[i]]=dis[nmp]+1;
q.push(to[i]);
if(to[i]==t) return 1;
}
}
return 0;
}
int dinic(int x,int flow)
{
int tmp,temp=flow;
if(x==t) return flow;
for(int i=head[x];i;i=net[i])
if(val[i]>0&&dis[to[i]]==dis[x]+1)
{
tmp=dinic(to[i],min(val[i],temp));
if(tmp==0) dis[to[i]]=0;
temp-=tmp,val[i]-=tmp,val[i^1]+=tmp;
if(!temp) break;
}
return flow-temp;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
int x;
scanf("%d",&x);
add(i,t,x);
}
for(int i=1;i<=m;i++)
{
int x,y,c;
scanf("%d%d%d",&x,&y,&c);
add(s,5000+i,c);
add(5000+i,x,1<<30);
add(5000+i,y,1<<30);
ans+=c;
}
while(bfs())
{
ans-=dinic(s,1<<30);
}
printf("%d",ans);
return 0;
}