第一次知道这种东西 有点强 但是不知道原理
例题:给定 n,k ,1≤n≤1018,1≤k≤100 求:
矩乘也可以做 式子拆开:
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define pb push_back
typedef long long ll;
#define SZ(x) ((ll)(x).size())
typedef vector<ll> VI;
typedef pair<ll,ll> PII;
const ll mod=998244353;
ll powmod(ll a,ll b) { ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1) { if(b&1)res=res*a%mod;a=a*a%mod; } return res; }
ll _;
namespace linear_seq
{
const ll N=10010;
ll res[N],base[N],_c[N],_md[N];
vector<ll> Md;
void mul(ll *a,ll *b,ll k)
{
rep(i,0,k+k) _c[i]=0;
rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (ll i=k+k-1;i>=k;i--) if (_c[i])
rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,0,k) a[i]=_c[i];
}
ll solve(ll n,VI a,VI b)
{
// a 系数 b 初值 b[n+1]=a[0]*b[n]+...
// printf("%d\n",SZ(b));
ll ans=0,pnt=0;
ll k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
Md.clear();
rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
rep(i,0,k) res[i]=base[i]=0;
res[0]=1;
while ((1ll<<pnt)<=n) pnt++;
for (ll p=pnt;p>=0;p--)
{
mul(res,res,k);
if ((n>>p)&1)
{
for (ll i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
if (ans<0) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(1,1),B(1,1);
ll L=0,m=1,b=1;
rep(n,0,SZ(s)) {
ll d=0;
rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==0) ++m;
else if (2*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+1-L; B=T; b=d; m=1;
} else {
ll c=mod-d*powmod(b,mod-2)%mod;
while (SZ(C)<SZ(B)+m) C.pb(0);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
ll gao(VI a,ll n)
{
VI c=BM(a);
c.erase(c.begin());
rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
};
// int main()
// {
// while (~scanf("%lld",&n))
// {
// vector<ll>v;
// v.push_back(1);//前几项
// v.push_back(5);
// v.push_back(15);
// v.push_back(35);
// v.push_back(70);
// v.push_back(126);
// printf("%lld\n",linear_seq::gao(v,n-1));
// }
// }
ll n,k,sum;
ll f[1010];
int main()
{
vector<ll>v;
scanf("%lld%lld",&n,&k);
f[1]=1,sum=1;
v.push_back(sum);
for(int i=2;i<=1000;i++)
{
f[i]=(f[i-1]+f[i-2])%mod;
ll pow=1;
for(int j=1;j<=k;j++) pow=(pow*i)%mod;
sum=(sum+pow*f[i])%mod;
v.push_back(sum);
}
printf("%lld",linear_seq::gao(v,n-1));
}